Powered By Blogger

Senin, 30 Januari 2012

biografi pythagoras (fadilla p.r.c)

Biografi Phytagoras | Penemu Teori Phytagoras



Phytagoras lahir pada tahun 570 SM, di pulau Samos, di daerah Ionia. Pythagoras (582 SM – 496 SM, bahasa Yunani: Πυθαγόρας) adalah seorang matematikawan dan filsuf Yunani yang paling dikenal melalui teoremanya.Dikenal sebagai "Bapak Bilangan", dia memberikan sumbangan yang penting terhadap filsafat dan ajaran keagamaan pada akhir abad ke-6 SM. Kehidupan dan ajarannya tidak begitu jelas akibat banyaknya legenda dan kisah-kisah buatan mengenai dirinya.

Dalam tradisi Yunani, diceritakan bahwa ia banyak melakukan perjalanan, diantaranya ke Mesir. Perjalanan Phytagoras ke Mesir merupakan salah satu bentuk usahanya untuk berguru, menimba ilmu, pada imam-imam di Mesir. Konon, karena kecerdasannya yang luar biasa, para imam yang dikunjunginya merasa tidak sanggup untuk menerima Phytagoras sebagai murid. Namun, pada akhirnya ia diterima sebagai murid oleh para imam di Thebe. Disini ia belajar berbagai macam misteri. Selain itu, Phytagoras juga berguru pada imam-imam Caldei untuk belajar Astronomi, pada para imam Phoenesia untuk belajar Logistik dan Geometri, pada para Magi untuk belajar ritus-ritus mistik, dan dalam perjumpaannya dengan Zarathustra, ia belajar teori perlawanan.

Selepas berkelana untuk mencari ilmu, Phytagoras kembali ke Samos dan meneruskan pencarian filsafatnya serta menjadi guru untuk anak Polycartes, penguasa tiran di Samos. Kira-kira pada tahun 530, karena tidak setuju dengan pemerintahan tyrannos Polycartes, ia berpindah ke kota Kroton di Italia Selatan. Di kota ini, Phytagoras mendirikan sebuah tarekat beragama yang kemudian dikenal dengan sebutan “Kaum Phytagorean.”

Kaum Phytagorean

Kaum phytagorean sangat berjasa dalam meneruskan pemikiran-pemikiran Phytagoras. Semboyan mereka yang terkenal adalah “authos epha, ipse dixit” (dia sendiri yang telah mengatakan demikian).2 Kaum ini diorganisir menurut aturan-aturan hidup bersama, dan setiap orang wajib menaatinya. Mereka menganggap filsafat dan ilmu pengetahuan sebagai jalan hidup, sarana supaya setiap orang menjadi tahir, sehingga luput dari perpindahan jiwa terus-menerus.
Diantara pengikut-pengikut Phytagoras di kemudian hari berkembang dua aliran. Yang pertama disebut akusmatikoi (akusma = apa yang telah didengar; peraturan): mereka mengindahkan penyucian dengan menaati semua peraturan secara seksama. Yang kedua disebut mathematikoi (mathesis = ilmu pengetahuan): mereka mengutamakan ilmu pengetahuan, khususnya ilmu pasti.

Pemikiran Phytagoras

Phytagoras percaya bahwa angka bukan unsur seperti udara dan air yang banyak dipercaya sebagai unsur semua benda. Angka bukan anasir alam. Pada dasarnya kaum Phytagorean menganggap bahwa pandangan Anaximandros tentang to Apeiron dekat juga dengan pandangan Phytagoras. To Apeiron melepaskan unsur-unsur berlawanan agar terjadi keseimbangan atau keadilan (dikhe). Pandangan Phytagoras mengungkapkan bahwa harmoni terjadi berkat angka. Bila segala hal adalah angka, maka hal ini tidak saja berarti bahwa segalanya bisa dihitung, dinilai dan diukur dengan angka dalam hubungan yang proporsional dan teratur, melainkan berkat angka-angka itu segala sesuatu menjadi harmonis, seimbang. Dengan kata lain tata tertib terjadi melalui angka-angka.

Salah satu peninggalan Phytagoras yang terkenal adalah teorema Pythagoras, yang menyatakan bahwa kuadrat hipotenusa dari suatu segitiga siku-siku adalah sama dengan jumlah kuadrat dari kaki-kakinya (sisi-sisi siku-sikunya). Walaupun fakta di dalam teorema ini telah banyak diketahui sebelum lahirnya Pythagoras, namun teorema ini dikreditkan kepada Pythagoras karena ia lah yang pertama membuktikan pengamatan ini secara matematis.[1]

Pythagoras dan murid-muridnya percaya bahwa segala sesuatu di dunia ini berhubungan dengan matematika, dan merasa bahwa segalanya dapat diprediksikan dan diukur dalam siklus beritme. Ia percaya keindahan matematika disebabkan segala fenomena alam dapat dinyatakan dalam bilangan-bilangan atau perbandingan bilangan. Ketika muridnya Hippasus menemukan bahwa \sqrt{2}, hipotenusa dari segitiga siku-siku sama kaki dengan sisi siku-siku masing-masing 1, adalah bilangan irasional, Pythagoras memutuskan untuk membunuhnya karena tidak dapat membantah bukti yang diajukan Hippasus

persamaan garis lurus (afifia )

1. Definisi Gradien
Gradien suatu garis lurus adalah : Perbandingan antara komponen y (ordinat) dan komponen x (absis) antara dua titik pada garis itu. Gradien suatu garis biasanya dinotasikan dengan huruf kecil m. Perhatikan gambar di bawah ini !
komponen y dari garis AB = y2 - y1 ; komponen x dari garis AB = x2 - x1, maka :
Catatan : gradien sebuah garis sering disebut kecondongan sebuah garis atau koefisien arah sebuah garis.

1.1. Macam-macam gradien
a. Gradien bernilai positif

Garis l condong ke kanan , maka ml bernilai positif
b. Gradien bernilai negatif

Garis k condong ke kiri , maka mk bernilai negatif
Gradien dari sebuah persamaan garis
Jika sebuah garis mempunyai persamaan ax + by = c, maka gradien persamaan garis itu ialah :

c. Gradien garis melalui pangkal koordinat

Garis l melalui pangkal koordinat (0,0) maka
 
d. Gradien dua garis yang sejajar

Dua garis yang sejajar mempunyai gradien yang sama, garis l dan garis k sejajar, maka ml = mk
 
e. Gradien dua garis yang saling tegak lurus

Dua garis yang saling tegak lurus perkalian gradiennya adalah -1.Garis l dan garis k saling tegak lurus, maka ml x mk = -1.

1.2. Contoh-Contoh Soal
Contoh 1 :
Tentukanlah gradien garis :
  1. melalui titik P(2,-5) dan titik Q(-9,3)
  2. melalui pangkal koordinat dan titik A(-2,-8)

Penyelesaian :
a. Melalui titik P(2,-5) dan titik Q(-9,3)
P(2,-5) berarti x1 = 2 , y1 = -5
Q(-9,3) berarti x2 = -9 , y2 = 3
Jadi gradient melalui titik P(2,-5) dan titik Q(-9,3) adalah

b. Melalui pangkal koordinat dan titik A(-2,-8)
A(-2,-8) berarti x = -2 , y1 = -8
Jadi gradient melalui pangkal koordinat dan titik A(-2,-8) adalah 4


Contoh 2 :
Tentukanlah gradient sebuah garis :
  1. yang sejajar dengan garis 4x + 2y = 6
  2. yang tegak lurus dengan garis x - 4y = 10

Penyelesaian :
  1. Persamaan garis 4x + 2y = 6, maka a = 4, b = 2
Dua garis yang sejajar : m1 = m2 , maka m2 = - 2
  1. Persamaan garis x - 4y = 10, maka a = 1, b = -4
Dua garis yang tegak lurus : m1 x m2 = -1 , maka

logaritma (jik ernawati)

alog f(x) = alog g(x) ® f(x) = g(x)
alog f(x) = b ® f(x) =ab
f(x)log a = b ® (f(x))b = a
Dengan syarat x yang didapat dari persamaan tersebut harus terdefinisi. (Bilangan pokok > 0 ¹ 1 dan numerus > 0 )
Contoh: Tentukan nilai x yang memenuhi persamaan berikut !
xlog 1/100 = -1/8
x-1/8 = 10-2
(x -1/8) -8 = (10-2)-8
x = 10 16
xlog 81 - 2 xlog 27 + xlog 9 + 1/2 xlog 729 = 6
xlog 34 - 2 xlog33 + xlog² + 1/2 xlog 36 = 6
4 xlog3 - 6 xlog3 + 2 xlog3 + 3 xlog 3 = 6
3 xlog 3 = 6
xlog 3 = 2
x² = 3
® x = Ö3 (x>0)
xlog (x+12) - 3 xlog4 + 1 = 0
xlog(x+12) - xlog 4³ = -1
xlog ((x+12)/4³) = -1
(x+12)/4³ = 1/x
x² + 12x - 64 = 0
(x + 16)(x - 4) = 0
x = -16 (TM) ; x = 4
²log²x - 2 ²logx - 3 = 0

misal : ²log x = p

p² - 2p - 3 = 0
(p-3)(p+1) = 0

p1 = 3
²log x = 3
x1 = 2³ = 8

p2 = -1
²log x = -1
x2 = 2-1 = 1/2
Bilangan pokok a > 0 ¹ 1
Tanda pertidaksamaan tetap/berubah tergantung nilai bilangan pokoknya
a > 1
0 < a < 1
a log f(x) > b ® f(x) > ab
a log f(x) < b
® f(x) < ab
(tanda tetap)
a log f(x) > b ® f(x) < ab
a log f(x) < b
® f(x) > ab
(tanda berubah)
syarat f(x) > 0

Contoh:
Tentukan batas-batas nilai x yang memenuhi persamaan
²log(x² - 2x) < 3
a = 2 (a>1)
® Hilangkan log ® Tanda tetap


- 2 < x < 0 atau 2 < x < 4

x² - 2x < 2³
x² - 2x -8 < 0
(x-4)(x+2) < 0
-2 < x < 4
syarat : x² - 2 > 0
x(x-2) > 0
x < 0 atau x > 2
1/2log (x² - 3) < 0
a = 1/2 (0 < a < 1)
® Hilangkan log ® Tanda berubah


x < - 2 atau x > 2

persamaan linier satu variabel (jik ernawati)

Persamaan linier satu variable adalah persamaan yang hanya menggunakan satu variable saja (hanya satu variable)
1. Kalimat terbuka
Kalimat terbuka adalah kalimat matematika yang belum jelas benar dan salahnya.
Kalimat pernyataan adalah kalimat yang mempunyai nilai benar atau salah
Contoh kalimat benar
Jumlah dari enam dan dua adalah delapan
Enam dikurangi dua adalah empat
Contoh kalimat salah
Tujuh habis dibagi tiga
Persegi memiliki satu sisi
Jadi
Kalimat benar adalah kalimat yang pernyataannya memiliki nilai benar
Kalimat salah adalah kalimat yang pernyataannya memiliki nilai salah
2. Persamaan linier Satu Variabel
Pesamaan linier satu variable adalah persamaan yang hanya menggunakan satu variable saja (hanya satu variable)
Bentuk umum
ax + b = c   0, x = perubah
Persamaan linier dapat diselesaikan dengan cara
a. Menambah, mengurangi, membagi atau mengali dengan bilangan yang sama
b. Setiap pemindahan ruas, dari kirikekanan atau sebaliknya dapat diikuti perubahan tanda dari positif ke negatif atau sebaliknya.
Contoh
1.  4x -12 = 20
Jawab
4x -12 = 20
4x = 20 + 12
4x = 32
x= 8
2.  5x -20 = 10
Jawab
5x – 20 = 10
5x = 20 + 10
5x = 30
x = 6
Penerapan Untuk Persamaan Linier dalam Sehari-hari
Contoh
Jumlah siswa kelas 2 adalah 40 siswa. Jika jumlah siswa laki-laki sebanyak 12 siswa, berapa jumlah siswa perempuan.
Jawab
a + 12 = 40
a = 40 -12
a = 28



ALJABAR ( by jik ernawati)

Aljabar adalah suatu kalimat matematika yang mengandung variabel dan konstanta.

Daftar isi

[sembunyikan]

[sunting] Mengubah pernyataan aljabar menjadi bentuk aljabar

  • Sepotong kayu yang panjang mula-mula adalah 30 cm, dipotong x cm dan dibagi menjadi 9 potong. Bentuk aljabarnya adalah:


\frac{30-x}{9}


  • Segenggam wortel yang panjangnya 16 cm dimakan sepanjang a cm. Bentuk aljabarnya adalah:

16 − a

[sunting] Koefisien bentuk aljabar

  • Tentukan koefisien dari 8x + 2 + 3y!

Koefisien dari x adalah 8 dan koefisien dari y adalah 3

[sunting] Suku-suku yang sejenis

Perhatikan bentuk aljabar berikut!

4x, 3x, 4, 4y, 3x, 7, 2x, 5a, 6b, 8k

Suku-suku yang sejenis adalah 4x, 3x, 3x, 2x.
Suku-suku yang tidak sejenis adalah 4y, 5a, 6b dan 8k.

Menyelesaikan operasi hitung aljabar

Penjumlahan dan Pengurangan

Dasar

Contoh:

  • 2d + 4d = 6d
  • 3e + 3e = 6e
  • 9x - 4x = 5x
  • 5x - 3x = 2x

Rabu, 25 Januari 2012

Euclides : ahli matematika yunani

Euclides : Ahli Matematika Yunani PDF Print E-mail
EuclidesEuclides atau (±300 sM ) adalah ahli matematika Yunani, guru, penyusun buku pelajaran yang terbesar sepanjang abad.  Euclides  dikenal juga sebagai Euclid atau Euclid of Alexandria. Bukunya yang berjudul "Stoicheia" (unsur) tentang geometri (ilmu ukur) jadi buku pelajaran yang di pakai di sekolah menengah di seluruh dunia selama 20 abad lebih. Buku itu terdiri dari 13 jilid. Jilid 1 tentang konstruksi sederhana ilmu ukur sampai Dalil Pythagoras. Jilid II tentang aljabar yang di konstruksikan secara ilmu ukur. Jilid III dan IV tentang lingkaran. Jilid V-VI tentang perbandingan sampi deret ukur. Jilid VIII dan IX tentang teori bilangan. Jilid X tentang perbandingan lagi. Jilid XI - XIII tentang ilmu ukur ruang.

Ia juga mengarang buku-buku lain yang berjudul Data, Phaenomena, Optika, Unsur Musik, Pembagian Bentuk, Porisme (3 jilid), Pseudoria, Katoptrika, IrisanPatung Euclides di Oxford University Kerucut (4 jilid). Tapi buku-buku tersebut sudah musnah.Kita tahu dari laporan orang lain, misalnya laporan Proclus, ahli filsafat Yuanai, yang menulis tentang Euclides kira-kira 700 tahun sesudah Euclides meninggal. Kapan dan dimana Euclides lahir, tak ada orang yang tahu. Kapan dan dimana Euclides meningal, juga tak ada orang yang tahu. Meskipun demikian, di bidang geometri Euclides adalah orang yang paling berpengaruh di dunia. Maka tak mengherankan kalau ia sering mendapat julukan geometri.

Yang jelas ia hidup pada zaman Ptolemaeus l (305-285 sM.), raja Mesir bekas jenderal kesayangan Alexander Agung. Ptolemaeus l membuat kota Alexandria jadi ibu kota. Jadi pusat perdagangan dan pusat ilmu pengetahuan. Ptolemaeus l juga  membuat perpustakaan yang terbesar di dunia pada zaman itu. Perpustakaan itu menyimpan 700.000 gulung naskah kuno. One of the oldest surviving fragments of Euclid's Elements, found 
at Oxyrhynchus and dated to circa AD 100. The diagram accompanies Book 
II, Proposition 5Euclides adalah orang pertama di dunia yang mendirikan sekolah matematika  di Alexandria.

Menurut  Proclus pada suatu hari Ptolemaeus l ingin sekali belajar geometri dan Euclides. Ia mengundang Euclides ke istananya dan mulai mendengarkan pelajaran geometri Euclids Elementsdari Euclides. Tapi kemudian Ptolemaeus merasa bahwa geometri terlalu sulit dan terlalu lama untuk dimengerti. Maka ia minta agar pelajaran dipercepat. Euclides menjawab, “Bagi raja pun tak ada jalan pintas ke geometri!”     














By : M saiful

GAlileo galilei

Galileo Galilei


Galileo lahir di Pisa. Dia anak laki-laki Vincenzo Galilei (1520–1591), seorang komposer dan teoritikus musik yang ulung. Dia menerima pendidikan pertamanya di sebuah biara di dekat Florence, dan di tahun 1581, dia masuk University of Pisa untuk belajar kedokteran. Saat ia menjadi mahasiswa, ia meneliti sebuah lampu gantung yang bergoyang, dan memerhatikan bahwa waktu yang diperlukan lampu itu untuk menyelesaikan ayunannya adalah tetap sama, bahkan bila kecepatan ayunan lampu itu bertambah dengan cepat. Dia kemudian melakukan percobaan terhadap benda-benda tertentu dan mendapati bahwa benda-benda itu juga mengalami hal yang sama, hal ini mengingatkan dia pada prinsip pendulum. Dari penemuan ini, ia dapat menemukan suatu alat untuk mengukur waktu, yang menurut para dokter dapat digunakan untuk mengukur denyut nadi pasien. Christian Huygens kemudian mengambil prinsip ayunan pendulum itu untuk membuat jam pendulum.
Saat di University of Pisa, Galileo mengikuti pelajaran geometri dan setelah itu meninggalkan kuliah kedokterannya untuk mengabdikan dirinya pada bidang matematika. Namun, dia tidak dapat menyelesaikan kuliahnya karena kekurangan biaya. Dia kembali ke Florence pada tahun 1585 untuk mempelajari karya Euclid dan Archimedes. Dia memperluas karya Archimedes tentang hidrostatik dengan menciptakan keseimbangan hidrostatik, suatu alat yang dirancang untuk mengukur berat jenis benda. Tahun berikutnya, ia menerbitkan suatu tulisan yang menjelaskan penemuan barunya, yang menentukan gravitasi tertentu benda dengan memasukkannya ke dalam air. Dengan keseimbangan hidrostatik, Galileo mendapatkan reputasi sebagai ilmuwan di Itali.
Tahun 1592, Galileo diangkat sebagai profesor dalam bidang matematika oleh Padua University di Pisa, di mana ia memimpin percobaan tentang benda-benda yang jatuh. Aristoteles menyatakan bahwa benda yang lebih berat seharusnya jatuh lebih cepat daripada benda yang lebih ringan. Dalam percobaan itu Galileo menguji pernyataan Aristoteles dengan memanjat menara miring Pisa, menjatuhkan benda dengan berat yang bervariasi, dan dengan meyakinkan, membuktikan bahwa semua benda -- berapa pun beratnya -- jatuh dengan kecepatan yang sama.
Beberapa percobaan yang dilakukan Galileo tidaklah seperti yang diharapkan. Dia mencoba menentukan kecepatan kilat dengan menempatkan suatu alat bantu di sebuah bukit sedangkan dirinya berdiri di bukit yang lain dan menghitung kilat yang menyambar di bukit itu. Dia gagal karena puncak bukit itu terlalu dekat untuk membuat perhitungan.
Tahun 1593, Galileo menemukan salah satu alat ukur yang dapat digunakan dalam ilmu pengetahuan, yaitu termometer. Termometer temuan Galileo ini terdiri dari sebuah gelembung udara yang bisa membesar atau mengecil karena perubahan temperatur dan hal ini bisa menyebabkan level air naik atau turun. Meskipun alat ini tidak akurat karena tidak menghitung perubahan tekanan udara, alat ini merupakan pelopor perkembangan alat-alat canggih.
Dari tahun 1602 hingga 1609, Galileo mempelajari pergerakan pendulum dan benda-benda lain yang melengkung dan miring. Dengan menggunakan bidang miring yang dirakitnya sendiri, ia menyimpulkan bahwa benda yang jatuh memiliki laju kecepatan yang tetap. Hukum laju kecepatan ini kemudian membantu Issac Newton dalam menemukan hukum gravitasi.
Galileo tidak memberikan kontribusi apa pun dalam bidang astronomi hingga tahun 1604, saat suatu supernova tiba-tiba muncul menjadi berita hangat. Galileo memperkirakan benda ini lebih cepat daripada planet-planet dan ia juga menunjukkan bahwa ini berarti "surga yang sempurna dan tidak dapat berubah" yang dikemukakan Aristoteles tidak dapat diubah sama sekali. Ironisnya, penemuan Galileo yang terkenal, yaitu teleskop, bukanlah temuannya. Teleskop itu sendiri sebenarnya ditemukan tahun 1608 oleh Hans Lippershey, seorang pembuat kacamata dari Denmark. Saat Galileo mempelajari penemuan ini di pertengahan tahun 1609, dia segera membuat sendiri dan memberikan beberapa tambahan. Teleskop buatannya dapat memperbesar benda-benda 9 kali lipat, 3 kali lebih hebat dari buatan Lippershey. Teleskop Galileo terbukti sangat berguna untuk kegiatan kelautan dan Galileo diangkat sebagai profesor seumur hidup di University of Venice.
Ia kemudian melanjutkan karyanya, dan di akhir tahun 1609, dia telah membuat sebuah teleskop yang dapat memperbesar tiga puluh kali lipat. Penemuan yang dilakukannya terhadap alat ini menggerakkan bidang astronomi. Galileo melihat pinggiran bulan yang tidak rata, yang dianggapnya sebagai puncak-puncak gunung. Dia menganggap bahwa daerah bulan yang luas dan gelap adalah terdiri dari air, yang disebutnya sebagai "maria" (laut), meskipun sekarang kita tahu bahwa tidak ada air di bulan. Saat dia meneliti Milky Way, Galileo dikagumi karena menemukan Jupiter, yang berlanjut dengan penemuannya atas empat bulan Jupiter; yang kemudian disebutnya sebagai "satelit", suatu istilah yang diusulkan oleh seorang ahli astronomi Jerman, Johannes Kepler. Galileo menamakan bulan-bulan milik Jupiter itu dengan Sidera Medicea (Medicea Stars) untuk menghormati Cosimo de Midici, the Grand Duke of Tuscany (Adipati Tuscany), seseorang yang kepadanya Galileo bekerja sebagai "filsuf dan ahli matematika pertama" setelah meninggalkan University of Pisa di tahun 1610. Dengan terus mengadakan penelitian, ia juga dapat mengamati bulan- bulan yang sedang tertutup oleh Jupiter (gerhana), dan dari hal itulah dia dapat dengan tepat memperkirakan periode rotasi setiap bulan.
Tahun 1610, Galileo menggambarkan planet-planet yang ditemukannya di sebuah buku kecil yang disebut "Siderus Nuncius" (The Sidereal Messenger). Tahun 1613, Galileo menerbitkan sebuah buku di mana untuk pertama kalinya dia memberikan bukti dan pembelaannya secara terbuka tentang bentuk sistem tata surya yang terlebih dahulu dikemukakan oleh ahli astronomi asal Polandia, Nicholas Copernicus, yang mengatakan bahwa bumi yang letaknya di tengah-tengah alam semesta ini, seperti yang ada dalam rancangan Ptolemic, hanyalah salah satu galaksi yang mengelilingi matahari. Sementara itu, ada dukungan dari beberapa pendeta yang berkuasa terhadap bukti yang disampaikan Galileo atas teori Copernicus. Penguasa Roma Katolik akhirnya memutuskan bahwa perbaikan atas doktrin gereja yang panjang berkenaan dengan astronomi tidaklah diperlukan. Oleh sebab itulah di tahun 1616, sebuah dekrit dikeluarkan oleh gereja yang menyatakan bahwa pendapat yang dikemukakan Copernicus "salah dan keliru" dan Galileo diminta untuk tidak mengikuti sistem tersebut.
Selanjutnya, karena gereja Katolik dan pengadilan melarangnya untuk mengikuti teori Copernican mengenai sistem tata surya, maka Galileo memfokuskan diri pada masalah menentukan gelombang longitudinal di laut, yang membutuhkan sebuah jam yang dapat dipercaya. Galileo berpendapat bahwa ada kemungkinan untuk mengukur waktu dengan meneliti gerhana di bulan Jupiter. Sayangnya, ide ini tidak dapat dilakukan karena gerhana tidak dapat diperkirakan dengan cukup akurat dan meneliti benda angkasa dari sebuah perahu yang kandas adalah hampir tidak mungkin.
Galileo ingin perintah yang melarang teori Copernican dicabut. Dan di tahun 1624, ia melakukan perjalanan ke Roma untuk menyampaikan keinginannya itu kepada Paus yang baru saja terpilih, Urban VIII. Paus tidak akan mencabut larangan itu, tetapi akan memberi izin kepada Galileo untuk menulis tentang sistem Copernican, syaratnya tulisan tersebut tidak akan dipakai oleh gereja seperti contoh alam yang disampaikan oleh Ptolemaic.
Dengan dukungan dari Urban, Galileo menulis "Dialogue Concerning the Two Chief World Systems—Ptolemaic and Copernican", yang diterbitkan pada tahun 1632. Meskipun ia setuju untuk tidak membenarkan teori Copernican, namun ketidaksetujuannya atas teori itu dalam "Dialogue" nampak tidak meyakinkan dan bahkan menggelikan. Galileo kemudian mendapat perintah untuk ke Roma menghadap pengadilan, Galileo dituduh melanggar hukum 1616 yang melarang dia untuk mempromosikan teori Copernican. Dia dituduh telah melecehkan agama, dan dinyatakan bersalah serta diminta untuk mengakui kesalahannya. Pada masa-masa sulit itu, Galileo diduga membuat pernyataannya yang terkenal: "Dan masih terus berputar", yang merujuk pada doktrin Copernican tentang rotasi bumi pada porosnya.
Meskipun hukuman atas Galileo adalah hukuman penjara, Paus mengumumkan perintah untuk memberikan Galileo hukuman penjara rumah di rumahnya di dekat Florence. Meskipun ia dilarang untuk menerbitkan lagi karya-karyanya, dia mengabdikan diri pada pergerakan dan lintasan-lintasan parabolic, sampai pada teori-teori yang kemudian disempurnakan, dan memberikan suatu dampak yang penting dalam penggunaan meriam. Galileo buta dan meninggal pada usia 78 tahun. (t/Ratri) 

By : fadila

Apa itu matematika ??

Matematika


Euklides, matematikawan Yunani, abad ke-3 SM, seperti yang dilukiskan oleh Raffaello Sanzio di dalam detail ini dari Sekolah Athena.[1]

Matematika (dari bahasa Yunani: μαθηματικά - mathēmatiká) adalah studi besaran, struktur, ruang, dan perubahan. Para matematikawan mencari berbagai pola,[2][3] merumuskan konjektur baru, dan membangun kebenaran melalui metode deduksi yang kaku dari aksioma-aksioma dan definisi-definisi yang bersesuaian.[4]

Terdapat perselisihan tentang apakah objek-objek matematika seperti bilangan dan titik hadir secara alami, atau hanyalah buatan manusia. Seorang matematikawan Benjamin Peirce menyebut matematika sebagai "ilmu yang menggambarkan simpulan-simpulan yang penting".[5] Di pihak lain, Albert Einstein menyatakan bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan."[6]

Melalui penggunaan penalaran logika dan abstraksi, matematika berkembang dari pencacahan, perhitungan, pengukuran, dan pengkajian sistematis terhadap bangun dan pergerakan benda-benda fisika. Matematika praktis telah menjadi kegiatan manusia sejak adanya rekaman tertulis. Argumentasi kaku pertama muncul di dalam Matematika Yunani, terutama di dalam karya Euklides, Elemen.

Matematika selalu berkembang, misalnya di Cina pada tahun 300 SM, di India pada tahun 100 M, dan di Arab pada tahun 800 M, hingga zaman Renaisans, ketika temuan baru matematika berinteraksi dengan penemuan ilmiah baru yang mengarah pada peningkatan yang cepat di dalam laju penemuan matematika yang berlanjut hingga kini.[7]

Kini, matematika digunakan di seluruh dunia sebagai alat penting di berbagai bidang, termasuk ilmu alam, teknik, kedokteran/medis, dan ilmu sosial seperti ekonomi, dan psikologi. Matematika terapan, cabang matematika yang melingkupi penerapan pengetahuan matematika ke bidang-bidang lain, mengilhami dan membuat penggunaan temuan-temuan matematika baru, dan kadang-kadang mengarah pada pengembangan disiplin-disiplin ilmu yang sepenuhnya baru, seperti statistika dan teori permainan.

Para matematikawan juga bergulat di dalam matematika murni, atau matematika untuk perkembangan matematika itu sendiri, tanpa adanya penerapan di dalam pikiran, meskipun penerapan praktis yang menjadi latar munculnya matematika murni ternyata seringkali ditemukan terkemudian.[8]

Daftar isi

Etimologi

Kata "matematika" berasal dari bahasa Yunani Kuno μάθημα (máthēma), yang berarti pengkajian, pembelajaran, ilmu, yang ruang lingkupnya menyempit, dan arti teknisnya menjadi "pengkajian matematika", bahkan demikian juga pada zaman kuno. Kata sifatnya adalah μαθηματικός (mathēmatikós), berkaitan dengan pengkajian, atau tekun belajar, yang lebih jauhnya berarti matematis. Secara khusus, μαθηματικὴ τέχνη (mathēmatikḗ tékhnē), di dalam bahasa Latin ars mathematica, berarti seni matematika.

Bentuk jamak sering dipakai di dalam bahasa Inggris, seperti juga di dalam bahasa Perancis les mathématiques (dan jarang digunakan sebagai turunan bentuk tunggal la mathématique), merujuk pada bentuk jamak bahasa Latin yang cenderung netral mathematica (Cicero), berdasarkan bentuk jamak bahasa Yunani τα μαθηματικά (ta mathēmatiká), yang dipakai Aristotle, yang terjemahan kasarnya berarti "segala hal yang matematis".[9] Tetapi, di dalam bahasa Inggris, kata benda mathematics mengambil bentuk tunggal bila dipakai sebagai kata kerja. Di dalam ragam percakapan, matematika kerap kali disingkat sebagai math di Amerika Utara dan maths di tempat lain.

Sejarah


Sebuah quipu, yang dipakai oleh Inca untuk mencatatkan bilangan.

Evolusi matematika dapat dipandang sebagai sederetan abstraksi yang selalu bertambah banyak, atau perkataan lainnya perluasan pokok masalah. Abstraksi mula-mula, yang juga berlaku pada banyak binatang[10], adalah tentang bilangan: pernyataan bahwa dua apel dan dua jeruk (sebagai contoh) memiliki jumlah yang sama.

Selain mengetahui cara mencacah objek-objek fisika, manusia prasejarah juga mengenali cara mencacah besaran abstrak, seperti waktuhari, musim, tahun. Aritmetika dasar (penjumlahan, pengurangan, perkalian, dan pembagian) mengikuti secara alami.

Langkah selanjutnya memerlukan penulisan atau sistem lain untuk mencatatkan bilangan, semisal tali atau dawai bersimpul yang disebut quipu dipakai oleh bangsa Inca untuk menyimpan data numerik. Sistem bilangan ada banyak dan bermacam-macam, bilangan tertulis yang pertama diketahui ada di dalam naskah warisan Mesir Kuno di Kerajaan Tengah Mesir, Lembaran Matematika Rhind.



Penggunaan terkuno matematika adalah di dalam perdagangan, pengukuran tanah, pelukisan, dan pola-pola penenunan dan pencatatan waktu dan tidak pernah berkembang luas hingga tahun 3000 SM ke muka ketika orang Babilonia dan Mesir Kuno mulai menggunakan aritmetika, aljabar, dan geometri untuk penghitungan pajak dan urusan keuangan lainnya, bangunan dan konstruksi, dan astronomi.[11] Pengkajian matematika yang sistematis di dalam kebenarannya sendiri dimulai pada zaman Yunani Kuno antara tahun 600 dan 300 SM.

Matematika sejak saat itu segera berkembang luas, dan terdapat interaksi bermanfaat antara matematika dan sains, menguntungkan kedua belah pihak. Penemuan-penemuan matematika dibuat sepanjang sejarah dan berlanjut hingga kini. Menurut Mikhail B. Sevryuk, pada Januari 2006 terbitan Bulletin of the American Mathematical Society, "Banyaknya makalah dan buku yang dilibatkan di dalam basis data Mathematical Reviews sejak 1940 (tahun pertama beroperasinya MR) kini melebihi 1,9 juta, dan melebihi 75 ribu artikel ditambahkan ke dalam basis data itu tiap tahun. Sebagian besar karya di samudera ini berisi teorema matematika baru beserta bukti-buktinya."[12]

Ilham, matematika murni dan terapan, dan estetika

Matematika muncul pada saat dihadapinya masalah-masalah yang rumit yang melibatkan kuantitas, struktur, ruang, atau perubahan. Mulanya masalah-masalah itu dijumpai di dalam perdagangan, pengukuran tanah, dan kemudian astronomi; kini, semua ilmu pengetahuan menganjurkan masalah-masalah yang dikaji oleh para matematikawan, dan banyak masalah yang muncul di dalam matematika itu sendiri. Misalnya, seorang fisikawan Richard Feynman menemukan rumus integral lintasan mekanika kuantum menggunakan paduan nalar matematika dan wawasan fisika, dan teori dawai masa kini, teori ilmiah yang masih berkembang yang berupaya membersatukan empat gaya dasar alami, terus saja mengilhami matematika baru.[13]

Beberapa matematika hanya bersesuaian di dalam wilayah yang mengilhaminya, dan diterapkan untuk memecahkan masalah lanjutan di wilayah itu. Tetapi seringkali matematika diilhami oleh bukti-bukti di satu wilayah ternyata bermanfaat juga di banyak wilayah lainnya, dan menggabungkan persediaan umum konsep-konsep matematika. Fakta yang menakjubkan bahwa matematika "paling murni" sering beralih menjadi memiliki terapan praktis adalah apa yang Eugene Wigner memanggilnya sebagai "Ketidakefektifan Matematika tak ternalar di dalam Ilmu Pengetahuan Alam".[14]

Seperti di sebagian besar wilayah pengkajian, ledakan pengetahuan di zaman ilmiah telah mengarah pada pengkhususan di dalam matematika. Satu perbedaan utama adalah di antara matematika murni dan matematika terapan: sebagian besar matematikawan memusatkan penelitian mereka hanya pada satu wilayah ini, dan kadang-kadang pilihan ini dibuat sedini perkuliahan program sarjana mereka. Beberapa wilayah matematika terapan telah digabungkan dengan tradisi-tradisi yang bersesuaian di luar matematika dan menjadi disiplin yang memiliki hak tersendiri, termasuk statistika, riset operasi, dan ilmu komputer.

Mereka yang berminat kepada matematika seringkali menjumpai suatu aspek estetika tertentu di banyak matematika. Banyak matematikawan berbicara tentang keanggunan matematika, estetika yang tersirat, dan keindahan dari dalamnya. Kesederhanaan dan keumumannya dihargai. Terdapat keindahan di dalam kesederhanaan dan keanggunan bukti yang diberikan, semisal bukti Euclid yakni bahwa terdapat tak-terhingga banyaknya bilangan prima, dan di dalam metode numerik yang anggun bahwa perhitungan laju, yakni transformasi Fourier cepat. G. H. Hardy di dalam A Mathematician's Apology mengungkapkan keyakinan bahwa penganggapan estetika ini, di dalamnya sendiri, cukup untuk mendukung pengkajian matematika murni.[15]

Para matematikawan sering bekerja keras menemukan bukti teorema yang anggun secara khusus, pencarian Paul Erdős sering berkutat pada sejenis pencarian akar dari "Alkitab" di mana Tuhan telah menuliskan bukti-bukti kesukaannya.[16][17] Kepopularan matematika rekreasi adalah isyarat lain bahwa kegembiraan banyak dijumpai ketika seseorang mampu memecahkan soal-soal matematika.

Notasi, bahasa, dan kekakuan


Sebagian besar notasi matematika yang digunakan saat ini tidaklah ditemukan hingga abad ke-16.[18] Pada abad ke-18, Euler bertanggung jawab atas banyak notasi yang digunakan saat ini. Notasi modern membuat matematika lebih mudah bagi para profesional, tetapi para pemula sering menemukannya sebagai sesuatu yang mengerikan. Terjadi pemadatan yang amat sangat: sedikit lambang berisi informasi yang kaya. Seperti notasi musik, notasi matematika modern memiliki tata kalimat yang kaku dan menyandikan informasi yang barangkali sukar bila dituliskan menurut cara lain.

Bahasa matematika dapat juga terkesan sukar bagi para pemula. Kata-kata seperti atau dan hanya memiliki arti yang lebih presisi daripada di dalam percakapan sehari-hari. Selain itu, kata-kata semisal terbuka dan lapangan memberikan arti khusus matematika. Jargon matematika termasuk istilah-istilah teknis semisal homomorfisme dan terintegralkan. Tetapi ada alasan untuk notasi khusus dan jargon teknis ini: matematika memerlukan presisi yang lebih dari sekadar percakapan sehari-hari. Para matematikawan menyebut presisi bahasa dan logika ini sebagai "kaku" (rigor).


Lambang ketakhinggaan di dalam beberapa gaya sajian.

Kaku secara mendasar adalah tentang bukti matematika. Para matematikawan ingin teorema mereka mengikuti aksioma-aksioma dengan maksud penalaran yang sistematik. Ini untuk mencegah "teorema" yang salah ambil, didasarkan pada praduga kegagalan, di mana banyak contoh pernah muncul di dalam sejarah subjek ini.[19] Tingkat kekakuan diharapkan di dalam matematika selalu berubah-ubah sepanjang waktu: bangsa Yunani menginginkan dalil yang terperinci, namun pada saat itu metode yang digunakan Isaac Newton kuranglah kaku. Masalah yang melekat pada definisi-definisi yang digunakan Newton akan mengarah kepada munculnya analisis saksama dan bukti formal pada abad ke-19. Kini, para matematikawan masih terus beradu argumentasi tentang bukti berbantuan-komputer. Karena perhitungan besar sangatlah sukar diperiksa, bukti-bukti itu mungkin saja tidak cukup kaku.[20]

Aksioma menurut pemikiran tradisional adalah "kebenaran yang menjadi bukti dengan sendirinya", tetapi konsep ini memicu persoalan. Pada tingkatan formal, sebuah aksioma hanyalah seutas dawai lambang, yang hanya memiliki makna tersirat di dalam konteks semua rumus yang terturunkan dari suatu sistem aksioma. Inilah tujuan program Hilbert untuk meletakkan semua matematika pada sebuah basis aksioma yang kokoh, tetapi menurut Teorema ketaklengkapan Gödel tiap-tiap sistem aksioma (yang cukup kuat) memiliki rumus-rumus yang tidak dapat ditentukan; dan oleh karena itulah suatu aksiomatisasi terakhir di dalam matematika adalah mustahil. Meski demikian, matematika sering dibayangkan (di dalam konteks formal) tidak lain kecuali teori himpunan di beberapa aksiomatisasi, dengan pengertian bahwa tiap-tiap pernyataan atau bukti matematika dapat dikemas ke dalam rumus-rumus teori himpunan.[21]

Matematika sebagai ilmu pengetahuan


Carl Friedrich Gauss, menganggap dirinya sebagai "pangerannya para matematikawan", dan mengatakan matematika sebagai "Ratunya Ilmu Pengetahuan".

Carl Friedrich Gauss mengatakan matematika sebagai "Ratunya Ilmu Pengetahuan".[22] Di dalam bahasa aslinya, Latin Regina Scientiarum, juga di dalam bahasa Jerman Königin der Wissenschaften, kata yang bersesuaian dengan ilmu pengetahuan berarti (lapangan) pengetahuan. Jelas, inipun arti asli di dalam bahasa Inggris, dan tiada keraguan bahwa matematika di dalam konteks ini adalah sebuah ilmu pengetahuan. Pengkhususan yang mempersempit makna menjadi ilmu pengetahuan alam adalah di masa terkemudian. Bila seseorang memandang ilmu pengetahuan hanya terbatas pada dunia fisika, maka matematika, atau sekurang-kurangnya matematika murni, bukanlah ilmu pengetahuan.

Albert Einstein menyatakan bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, maka mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan."[6]

Banyak filsuf yakin bahwa matematika tidaklah terpalsukan berdasarkan percobaan, dan dengan demikian bukanlah ilmu pengetahuan per definisi Karl Popper.[23] Tetapi, di dalam karya penting tahun 1930-an tentang logika matematika menunjukkan bahwa matematika tidak bisa direduksi menjadi logika, dan Karl Popper menyimpulkan bahwa "sebagian besar teori matematika, seperti halnya fisika dan biologi, adalah hipotetis-deduktif: oleh karena itu matematika menjadi lebih dekat ke ilmu pengetahuan alam yang hipotesis-hipotesisnya adalah konjektur (dugaan), lebih daripada sebagai hal yang baru."[24] Para bijak bestari lainnya, sebut saja Imre Lakatos, telah menerapkan satu versi pemalsuan kepada matematika itu sendiri.

Sebuah tinjauan alternatif adalah bahwa lapangan-lapangan ilmiah tertentu (misalnya fisika teoretis) adalah matematika dengan aksioma-aksioma yang ditujukan sedemikian sehingga bersesuaian dengan kenyataan. Faktanya, seorang fisikawan teoretis, J. M. Ziman, mengajukan pendapat bahwa ilmu pengetahuan adalah pengetahuan umum dan dengan demikian matematika termasuk di dalamnya.[25] Di beberapa kasus, matematika banyak saling berbagi dengan ilmu pengetahuan fisika, sebut saja penggalian dampak-dampak logis dari beberapa anggapan. Intuisi dan percobaan juga berperan penting di dalam perumusan konjektur-konjektur, baik itu di matematika, maupun di ilmu-ilmu pengetahuan (lainnya).

Matematika percobaan terus bertumbuh kembang, mengingat kepentingannya di dalam matematika, kemudian komputasi dan simulasi memainkan peran yang semakin menguat, baik itu di ilmu pengetahuan, maupun di matematika, melemahkan objeksi yang mana matematika tidak menggunakan metode ilmiah. Di dalam bukunya yang diterbitkan pada 2002 A New Kind of Science, Stephen Wolfram berdalil bahwa matematika komputasi pantas untuk digali secara empirik sebagai lapangan ilmiah di dalam haknya/kebenarannya sendiri.

Pendapat-pendapat para matematikawan terhadap hal ini adalah beraneka macam. Banyak matematikawan merasa bahwa untuk menyebut wilayah mereka sebagai ilmu pengetahuan sama saja dengan menurunkan kadar kepentingan sisi estetikanya, dan sejarahnya di dalam tujuh seni liberal tradisional; yang lainnya merasa bahwa pengabaian pranala ini terhadap ilmu pengetahuan sama saja dengan memutar-mutar mata yang buta terhadap fakta bahwa antarmuka antara matematika dan penerapannya di dalam ilmu pengetahuan dan rekayasa telah mengemudikan banyak pengembangan di dalam matematika.

Satu jalan yang dimainkan oleh perbedaan sudut pandang ini adalah di dalam perbincangan filsafat apakah matematika diciptakan (seperti di dalam seni) atau ditemukan (seperti di dalam ilmu pengetahuan). Adalah wajar bagi universitas bila dibagi ke dalam bagian-bagian yang menyertakan departemen Ilmu Pengetahuan dan Matematika, ini menunjukkan bahwa lapangan-lapangan itu dipandang bersekutu tetapi mereka tidak seperti dua sisi keping uang logam. Pada tataran praktisnya, para matematikawan biasanya dikelompokkan bersama-sama para ilmuwan pada tingkatan kasar, tetapi dipisahkan pada tingkatan akhir. Ini adalah salah satu dari banyak perkara yang diperhatikan di dalam filsafat matematika.

Penghargaan matematika umumnya dipelihara supaya tetap terpisah dari kesetaraannya dengan ilmu pengetahuan. Penghargaan yang adiluhung di dalam matematika adalah Fields Medal (medali lapangan),[26][27] dimulakan pada 1936 dan kini diselenggarakan tiap empat tahunan. Penghargaan ini sering dianggap setara dengan Hadiah Nobel ilmu pengetahuan.

Wolf Prize in Mathematics, dilembagakan pada 1978, mengakui masa prestasi, dan penghargaan internasional utama lainnya, Hadiah Abel, diperkenalkan pada 2003. Ini dianugerahkan bagi ruas khusus karya, dapat berupa pembaharuan, atau penyelesaian masalah yang terkemuka di dalam lapangan yang mapan.

Sebuah daftar terkenal berisikan 23 masalah terbuka, yang disebut "masalah Hilbert", dihimpun pada 1900 oleh matematikawan Jerman David Hilbert. Daftar ini meraih persulangan yang besar di antara para matematikawan, dan paling sedikit sembilan dari masalah-masalah itu kini terpecahkan.

Sebuah daftar baru berisi tujuh masalah penting, berjudul "Masalah Hadiah Milenium", diterbitkan pada 2000. Pemecahan tiap-tiap masalah ini berhadiah US$ 1 juta, dan hanya satu (hipotesis Riemann) yang mengalami penggandaan di dalam masalah-masalah Hilbert.

Bidang-bidang matematika

Sebuah sempoa, alat hitung sederhana yang dipakai sejak zaman kuno.

Disiplin-disiplin utama di dalam matematika pertama muncul karena kebutuhan akan perhitungan di dalam perdagangan, untuk memahami hubungan antarbilangan, untuk mengukur tanah, dan untuk meramal peristiwa astronomi. Empat kebutuhan ini secara kasar dapat dikaitkan dengan pembagian-pembagian kasar matematika ke dalam pengkajian besaran, struktur, ruang, dan perubahan (yakni aritmetika, aljabar, geometri, dan analisis). Selain pokok bahasan itu, juga terdapat pembagian-pembagian yang dipersembahkan untuk pranala-pranala penggalian dari jantung matematika ke lapangan-lapangan lain: ke logika, ke teori himpunan (dasar), ke matematika empirik dari aneka macam ilmu pengetahuan (matematika terapan), dan yang lebih baru adalah ke pengkajian kaku akan ketakpastian.

Besaran

Pengkajian besaran dimulakan dengan bilangan, pertama bilangan asli dan bilangan bulat ("semua bilangan") dan operasi aritmetika di ruang bilangan itu, yang dipersifatkan di dalam aritmetika. Sifat-sifat yang lebih dalam dari bilangan bulat dikaji di dalam teori bilangan, dari mana datangnya hasil-hasil popular seperti Teorema Terakhir Fermat. Teori bilangan juga memegang dua masalah tak terpecahkan: konjektur prima kembar dan konjektur Goldbach.

Karena sistem bilangan dikembangkan lebih jauh, bilangan bulat diakui sebagai himpunan bagian dari bilangan rasional ("pecahan"). Sementara bilangan pecahan berada di dalam bilangan real, yang dipakai untuk menyajikan besaran-besaran kontinu. Bilangan real diperumum menjadi bilangan kompleks. Inilah langkah pertama dari jenjang bilangan yang beranjak menyertakan kuarternion dan oktonion. Perhatian terhadap bilangan asli juga mengarah pada bilangan transfinit, yang memformalkan konsep pencacahan ketakhinggaan. Wilayah lain pengkajian ini adalah ukuran, yang mengarah pada bilangan kardinal dan kemudian pada konsepsi ketakhinggaan lainnya: bilangan aleph, yang memungkinkan perbandingan bermakna tentang ukuran himpunan-himpunan besar ketakhinggaan.

1, 2, 3\,\!

-2, -1, 0, 1, 2\,\!

 -2, \frac{2}{3}, 1.21\,\!

-e, \sqrt{2}, 3, \pi\,\!

2, i, -2+3i, 2e^{i\frac{4\pi}{3}}\,\!

Bilangan asli

Bilangan bulat

Bilangan rasional

Bilangan real

Bilangan kompleks

Ruang

Pengkajian ruang bermula dengan geometri – khususnya, geometri euclid. Trigonometri memadukan ruang dan bilangan, dan mencakupi Teorema pitagoras yang terkenal. Pengkajian modern tentang ruang memperumum gagasan-gagasan ini untuk menyertakan geometri berdimensi lebih tinggi, geometri tak-euclid (yang berperan penting di dalam relativitas umum) dan topologi. Besaran dan ruang berperan penting di dalam geometri analitik, geometri diferensial, dan geometri aljabar. Di dalam geometri diferensial terdapat konsep-konsep buntelan serat dan kalkulus lipatan.

Di dalam geometri aljabar terdapat penjelasan objek-objek geometri sebagai himpunan penyelesaian persamaan polinom, memadukan konsep-konsep besaran dan ruang, dan juga pengkajian grup topologi, yang memadukan struktur dan ruang. Grup lie biasa dipakai untuk mengkaji ruang, struktur, dan perubahan. Topologi di dalam banyak percabangannya mungkin menjadi wilayah pertumbuhan terbesar di dalam matematika abad ke-20, dan menyertakan konjektur poincaré yang telah lama ada dan teorema empat warna, yang hanya "berhasil" dibuktikan dengan komputer, dan belum pernah dibuktikan oleh manusia secara manual.






Geometri

Trigonometri

Geometri diferensial

Topologi

Geometri fraktal

Perubahan

Memahami dan menjelaskan perubahan adalah tema biasa di dalam ilmu pengetahuan alam, dan kalkulus telah berkembang sebagai alat yang penuh-daya untuk menyeledikinya. Fungsi-fungsi muncul di sini, sebagai konsep penting untuk menjelaskan besaran yang berubah. Pengkajian kaku tentang bilangan real dan fungsi-fungsi berpeubah real dikenal sebagai analisis real, dengan analisis kompleks lapangan yang setara untuk bilangan kompleks.

Hipotesis Riemann, salah satu masalah terbuka yang paling mendasar di dalam matematika, dilukiskan dari analisis kompleks. Analisis fungsional memusatkan perhatian pada ruang fungsi (biasanya berdimensi tak-hingga). Satu dari banyak terapan analisis fungsional adalah mekanika kuantum.

Banyak masalah secara alami mengarah pada hubungan antara besaran dan laju perubahannya, dan ini dikaji sebagai persamaan diferensial. Banyak gejala di alam dapat dijelaskan menggunakan sistem dinamika; teori kekacauan mempertepat jalan-jalan di mana banyak sistem ini memamerkan perilaku deterministik yang masih saja belum terdugakan.







Kalkulus

Kalkulus vektor

Persamaan diferensial

Sistem dinamika

Teori chaos

Analisis kompleks

Struktur

Banyak objek matematika, semisal himpunan bilangan dan fungsi, memamerkan struktur bagian dalam. Sifat-sifat struktural objek-objek ini diselidiki di dalam pengkajian grup, gelanggang, lapangan dan sistem abstrak lainnya, yang mereka sendiri adalah objek juga. Ini adalah lapangan aljabar abstrak. Sebuah konsep penting di sini yakni vektor, diperumum menjadi ruang vektor, dan dikaji di dalam aljabar linear. Pengkajian vektor memadukan tiga wilayah dasar matematika: besaran, struktur, dan ruang. Kalkulus vektor memperluas lapangan itu ke dalam wilayah dasar keempat, yakni perubahan. Kalkulus tensor mengkaji kesetangkupan dan perilaku vektor yang dirotasi. Sejumlah masalah kuno tentang Kompas dan konstruksi garis lurus akhirnya terpecahkan oleh Teori galois.

Elliptic curve simple.svg

Rubik's cube.svg

Group diagdram D6.svg

Lattice of the divisibility of 60.svg

Teori bilangan

Aljabar abstrak

Teori grup

Teori orde

Dasar dan filsafat

Untuk memeriksa dasar-dasar matematika, lapangan logika matematika dan teori himpunan dikembangkan, juga teori kategori yang masih dikembangkan. Kata majemuk "krisis dasar" mejelaskan pencarian dasar kaku untuk matematika yang mengambil tempat pada dasawarsa 1900-an sampai 1930-an.[28] Beberapa ketaksetujuan tentang dasar-dasar matematika berlanjut hingga kini. Krisis dasar dipicu oleh sejumlah silang sengketa pada masa itu, termasuk kontroversi teori himpunan Cantor dan kontroversi Brouwer-Hilbert.

Logika matematika diperhatikan dengan meletakkan matematika pada sebuah kerangka kerja aksiomatis yang kaku, dan mengkaji hasil-hasil kerangka kerja itu. Logika matematika adalah rumah bagi Teori ketaklengkapan kedua Gödel, mungkin hasil yang paling dirayakan di dunia logika, yang (secara informal) berakibat bahwa suatu sistem formal yang berisi aritmetika dasar, jika suara (maksudnya semua teorema yang dapat dibuktikan adalah benar), maka tak-lengkap (maksudnya terdapat teorema sejati yang tidak dapat dibuktikan di dalam sistem itu).

Gödel menunjukkan cara mengonstruksi, sembarang kumpulan aksioma bilangan teoretis yang diberikan, sebuah pernyataan formal di dalam logika yaitu sebuah bilangan sejati-suatu fakta teoretik, tetapi tidak mengikuti aksioma-aksioma itu. Oleh karena itu, tiada sistem formal yang merupakan aksiomatisasi sejati teori bilangan sepenuhnya. Logika modern dibagi ke dalam teori rekursi, teori model, dan teori pembuktian, dan terpaut dekat dengan ilmu komputer teoretis.

 p \Rightarrow q \,

Venn A intersect B.svg

Commutative diagram for morphism.svg

Logika matematika

Teori himpunan

Teori kategori

Matematika diskret

Matematika diskret adalah nama lazim untuk lapangan matematika yang paling berguna di dalam ilmu komputer teoretis. Ini menyertakan teori komputabilitas, teori kompleksitas komputasional, dan teori informasi. Teori komputabilitas memeriksa batasan-batasan berbagai model teoretis komputer, termasuk model yang dikenal paling berdaya - Mesin turing.

Teori kompleksitas adalah pengkajian traktabilitas oleh komputer; beberapa masalah, meski secara teoretis terselesaikan oleh komputer, tetapi cukup mahal menurut konteks waktu dan ruang, tidak dapat dikerjakan secara praktis, bahkan dengan cepatnya kemajuan perangkat keras komputer. Pamungkas, teori informasi memusatkan perhatian pada banyaknya data yang dapat disimpan pada media yang diberikan, dan oleh karenanya berkenaan dengan konsep-konsep semisal pemadatan dan entropi.

Sebagai lapangan yang relatif baru, matematika diskret memiliki sejumlah masalah terbuka yang mendasar. Yang paling terkenal adalah masalah "P=NP?", salah satu Masalah Hadiah Milenium.[29]

\begin{matrix} (1,2,3) & (1,3,2) \\ (2,1,3) & (2,3,1) \\ (3,1,2) & (3,2,1) \end{matrix}

DFAexample.svg

Caesar3.svg

6n-graf.svg

Kombinatorika

Teori komputasi

Kriptografi

Teori graf

Matematika terapan

Matematika terapan berkenaan dengan penggunaan alat matematika abstrak guna memecahkan masalah-masalah konkret di dalam ilmu pengetahuan, bisnis, dan wilayah lainnya. Sebuah lapangan penting di dalam matematika terapan adalah statistika, yang menggunakan teori peluang sebagai alat dan membolehkan penjelasan, analisis, dan peramalan gejala di mana peluang berperan penting. Sebagian besar percobaan, survey, dan pengkajian pengamatan memerlukan statistika. (Tetapi banyak statistikawan, tidak menganggap mereka sendiri sebagai matematikawan, melainkan sebagai kelompok sekutu.)

Analisis numerik menyelidiki metode komputasional untuk memecahkan masalah-masalah matematika secara efisien yang biasanya terlalu lebar bagi kapasitas numerik manusia, analisis numerik melibatkan pengkajian galat pemotongan atau sumber-sumber galat lain di dalam komputasi.


By : FAdilla